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Abstract

In this paper, we present a critical raw materials index (CRMI) that represents the price dy-

namics of the raw materials required for the low-carbon transition. Using a unique market and

trade dataset covering 29 critical raw materials from 2012 to 2023, we construct a weekly trade

weighted price index following a robust methodological framework. The relevance of our index is

demonstrated through a validation process including a plausibility analysis and a comparability

analysis. In addition, a sensitivity analysis provides empirical evidence of the robustness of our

index to alternative data treatment, weighting factors and weighting schemes. Our framework

offers policymakers a useful price benchmark to track the underlying metal market dynamics

required by the growing clean energy sectors.

JEL: C43, Q3, Q4, Q54.

Keywords: Critical Raw Materials Index (CRMI), Energy Transition, Index Construction, Metal

prices.

1. Introduction

In this paper, we present a critical raw materials index (CRMI) that represents the price

dynamics of the raw materials required for the low-carbon transition. Using a unique market

and trade dataset covering 29 critical raw materials from 2012–2023, we construct a weekly

trade weighted price index following a robust methodological framework. Focusing on the raw

materials critical for the low-carbon transition, the CRMI provides a benchmark to track the

dynamics underlying the growing clean energy sectors, e.g., electric vehicles, electricity networks,

grid battery storage, hydrogen, solar photovoltaics (PVs), and wind.

Climate change mitigation is a crucial issue for policymakers and critical raw materials play

a key role in the energy transition. Indeed, a growing use of renewable energy is a nonavoidable
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alternative to the use of carbon-intensive fossil fuels, and this growth depends on the availability

of a set of raw materials such as copper, cobalt, graphite, or rare-earth elements. Unfortunately,

critical raw materials are scarce and not equally distributed around the world in terms of extrac-

tion, refining and trade. Consequently, this market exhibits some oligopoly dynamics (IRENA,

2023; European Commission, 2024) that are exacerbated by the recent rise in trade restrictions,

resource nationalism, or regulatory measures for those raw materials (Kowalski and Legendre,

2023; Nobletz et al., 2024).

For example, China’s rare earth export controls have had significant impacts on the global

supply chain. In particular, the 2010 China–Japan crisis led to price bursts of rare earth elements

(Seaman, 2019; Liu and Paton, 2022). Other recent geopolitical tensions between China and the

US have fueled fears in the metal market. Indeed, in response to US protectionist policies, China

announced trade restrictions on germanium, gallium (Harper, 2023; Weaver, 2022), and graphite

(Benson and Denamiel, 2023), which are needed for the production of solar PVs and electric

vehicles. These types of restrictions could lead to potential supply and demand bottlenecks,

exponential price increases (Boer et al., 2024) and difficulties in financing the clean energy

transition. The consequences would be all the more relevant for the poorest households (Seck

et al., 2022; Hache and Louvet, 2023).

Recently, only a few studies have investigated metal price dynamics and their relationships

with economic activity. In addition, empirical papers about critical metals are mostly restricted

to specific metals, such as rare-earth elements (Reboredo and Ugolini, 2020). Therefore, the

literature lacks a price index that is representative of the critical materials market, which is

required to carry out empirical studies in the low-carbon economy field. Moreover, such an

index would be a valuable tool for policymakers to monitor developments relative to the demand

and supply in this market. Specifically, a critical metal price index could be used to construct

scenarios that consider critical materials for clean energy technology trajectories that impact

climate change paths. More broadly, such an index would help to monitor market tensions and

take the appropriate measures to secure supply chains.

Our goal is to propose a new index that provides a signal of the state of the critical raw

materials in the world market. This contribution is based on two innovations: data variable

selection and the index construction method. On the one hand, the components of the index

were sourced in an original way: materials were selected on the basis of their criticality to

the energy transition, and the weights were calculated on the basis of export volumes that

were carefully selected. On the other hand, data processing and the aggregation of the various

components of the index were carried out within a rigorous methodological framework, including

the management of missing and extreme values and the calculation of the weights. Finally, a

sensitivity analysis to changes in assumptions related to data collection and processing, as well

as to the aggregation of the index components, was carried out to assess the robustness of the

index.

The rest of this paper is organized as follows. Section 2 reviews the literature on critical
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raw materials, with a particular emphasis on their pricing determinants. Section 3 offers a

review of the methodology for CRMI construction. Section 5 describes the dataset and the main

empirical results. Specifically, the construction process is detailed, including the definition and

measurement of the index. Section 6 presents two exercises aimed at ensuring the validity of

the CRMI. Section 7 presents a sensitivity analysis performed to evaluate the robustness of the

CRMI. Finally, Section 8 concludes the paper.

2. Literature Review

Among raw materials, metals are receiving increasing attention in the literature. As in the

case of oil, the study of mineral price dynamics has aroused interest in terms of their impact

on both companies and governments. To optimize production cost management, company man-

agers need to understand and anticipate variations in metal prices. The same applies to public

decision-makers, who need to consider fluctuations in mineral prices to develop effective economic

policies, particularly in the areas of international trade, industry and energy, as well as to meet

the challenges of national defense. Business managers and policymakers must also ensure the

security of supply by implementing strategies to diversify supply sources and reduce the risk of

shortages. In this context, the economic literature has been enriched by works on precious metals

(e.g., silver and platinum) but also on ferrous base metals (e.g., iron and steel) or nonferrous

base metals (e.g., aluminum and copper). Most of these contributions have focused on examining

the factors that determine the prices of these metals on subsets of metals according to demand

or supply determinants. The literature on the determinants of metal prices has focused on this

duality, exploring the economic, geopolitical and environmental drivers of metal prices. More

specifically, empirical evidence indicates that global economic growth, interest rates, exchange

rates and monetary policies influence the demand for metals. Conflicts, economic sanctions and

geopolitical tensions can impact the metal supply. Finally, environmental regulations, natural

disasters and climate change concerns can also impact metal supply and demand. Important

contributions include Klotz et al. (2014) and Li et al. (2023), who studied the determinants of de-

mand in the metal market, whereas Wanner et al. (2014) and Baffes and Savescu (2014) focused

on the determinants of supply. There are also contributions in the literature concerning supply

and demand shocks and their impacts on prices (Hu et al., 2017; Ehrlich, 2018). The literature

on metal price dynamics is also based on either a microeconomic or a macroeconomic approach.

The former examines the role of market concentration (Bucciarelli et al., 2024), production con-

straints (IEA, 2023) and market structure (OTC) (IRENA, 2023). The latter investigates the

role of geopolitics, which has been the cause of the sharp increase in the prices of certain metals

(Seaman, 2019; Farchy et al., 2022; Harper, 2023; Weaver, 2022; Benson and Denamiel, 2023;

Liu and Paton, 2022), emphasizing that this effect differs from one metal to another (Chen et al.,

2022; Li et al., 2023). Other contributions have examined the interactions between metal prices

and the prices of other commodities, such as oil or gold (Reboredo and Ugolini, 2020).
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Recently, the empirical literature has been enriched by studies on the price dynamics of

critical metals. These metals cover a wide range of very diverse metals, including rare earths,

aluminum and copper. The definition of critical materials varies according to the context. The

notion of criticality is related to four levels of risk: geological, economic, strategic and envi-

ronmental (Hache and Carcanague, 2022). In particular, driven by the importance of the fight

against global warming, researchers have studied the price dynamics of certain metals needed

for the transition to a low-carbon economy. In this context, the literature has been enriched

by empirical contributions analyzing the relationships between critical metals for environmental

risk and green energy indices (Baldi et al., 2014; Bouri et al., 2021; Sohag et al., 2023). However,

these contributions each focused on one or more given metals. Hu et al. (2017) only considered

copper, Reboredo and Ugolini (2020) only considered rare earths, and Wang et al. (2023) only

considered nickel. Above all, very few contributions have focused on the metals needed for the

transition to a low-carbon economy. The few studies that do so are limited to a few metals

separately and often to rare earths and not as a whole. A few exceptions are the contributions

of Seck et al. (2022) and Boer et al. (2024), which examined whether metals for the energy

transition could constitute a bottleneck for zero net emissions. In particular, Seck et al. (2022)

studied the evolution of cobalt demand on the basis of several climate and mobility scenarios

and showed that the cobalt supply will probably not be sufficient to meet the growth in demand

for this metal, which is needed to manufacture the batteries used in electric and hybrid vehicles.

Using a more econometric approach, Boer et al. (2024) studied the impact of copper, nickel,

cobalt and lithium prices in an analysis of structural scenarios. Their results indicated that the

prices of these four metals could not only return to their historical highs but also remain there

for very long periods, which could hinder the transition to a low-carbon economy. The recent

literature has therefore been enriched by this study, which is a significant contribution to the

field of research dedicated to the fight against global warming. However, this list of metals is

only a subset of those critical to the energy transition. This gap in the literature is linked to

several limitations in terms of data, which stem from the fact that the critical metals market is

an OTC market and from the plurality of definitions of critical metals. On the one hand, issues

related to the collection of prices and volumes are typical of OTC markets. Missing values and

the opacity of the trading system mean that the data are not always reliable and that there is a

need for data processing, including data imputation and the management of extreme values. On

the other hand, as the definition of critical metals is not unanimous, the selection of a complete

list of critical metals for the energy transition is not trivial. Among the possible solutions, the

construction of a price index of critical metals for the energy transition would make it possible to

smooth out the problems associated with each metal in particular while offering a reference that

could serve as a basis for prospective and empirical studies in the field of the energy transition.
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3. Methodology

The CRMI was constructed using the methodology for composite indicators from Nardo

et al. (2008)’s framework. This composite indicator construction process, resulting from the

collaboration between the Organisation for Economic Co-operation and Development (OECD)

and the Joint Research Center (JRC) of the European Commission, is a reference in the literature

related to the consequences of climate change. For example, Lèbre et al. (2020), Sciarra et al.

(2021), and Papathoma-Köhle et al. (2022) used this methodological framework to construct

indicators related to energy transition metals, sustainable development and wildfire vulnerability,

respectively. Specifically, this framework consists of two steps: (i) data treatment and (ii)

weighting. These steps are described in Subsections 3.1 and 3.2, respectively .

3.1. Data treatment

In his seminal paper, Rubin (1976) noted that ignoring missing data can lead to, in addition

to a loss of precision, significant biases in the analysis models. Various strategies exist to handle

missing data, either by deletion or by imputation. The selection of the appropriate method

depends on the nature of the missingness mechanism, which can be random or not random. Little

and Rubin (1987) proposed a typology distinguishing three categories: (i) missing completely at

random (MCAR), (ii) missing at random (MAR), and (iii) missing not at random (MNAR).

Specifically, a dataset is considered to be MCAR if the probability of absence is identical for

all observations. This situation is rare but can occur when missing data are due to random events

unrelated to the variables studied. The MCAR hypothesis can be inferred via Little (1988)’s

test. The data are MAR if the probability of absence depends on one or more other observed

variables. In this case, imputation by regression on the predictors of missingness is possible and

allows us to correct the bias. The MAR hypothesis can be tested via Diggle (1989)’s approach.

Alternatively, the data are MNAR if the probability of absence depends on the variable itself.

This situation is problematic because it introduces a bias that cannot be corrected by standard

imputation methods. A sensitivity analysis can be useful for assessing the impact of MNAR

missingness on the results.

Since the 1980s, the management of missing data has given rise to abundant literature in

all scientific fields. In economics, data gaps can stem from various reasons, including trading

suspensions and a lack or irregularity of economic activity. More recently, some contributions in

macroeconomics have studied the impact of missing values on nowcasting accuracy (Giannone

et al., 2008) or financial development index construction (Svirydzenka, 2016). Currently, this

subject is still very topical, both theoretically and empirically (i.e., Bai and Ng (2021) and Jin

et al. (2021)).

Different methods of data imputation coexist in time series analyses. If missing data are

not MCAR, then simply deleting the relative observations is not an option. Data imputation is

necessary and depends on the statistical properties of the time series and the economic context.

When the data are stationary, replacing the missing value at time t with the last observed value
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at time t∗ (i.e., the last observation carried forward method) is widely used. Alternatively, a

common technique is to replace all missing values with a linear combination of observations,

such as the mean of nonmissing values. More formally, let P = (pit) ∈ RN×T
+ be the matrix

of prices, where pit is the price of mineral i at time t, with i ∈ {1, ..., N} and t ∈ {1, ..., T}.

Let M = (mit) ∈ {0, 1}N×T be the shadow matrix of P , so that mit = 1 if pit is missing, and

mit = 0 otherwise. Then, the last observation carried forward method data imputation can be

written as follows:

(pit) =

 {pit} if mit = 0

{pit∗ |mit = 0, t∗ < t} if mit = 1
. (1)

In the special case where only one value is missing at time t, then t∗ = t − 1 such that pit =

pit∗ = pi(t−1).

Instead of using all available observations, it is also possible to restrict the set of observations

to a sample to perform a local aggregation. Alternatively, missing values can be extrapolated

via a (local) regression of a linear or autoregressive model.

In summary„ managing missing data is therefore a necessary and crucial step in ensuring the

quality of the database used for research in economics. The choice of the appropriate method

depends on the type of missingness and the nature of the variable. Finally, this choice must be

made with a full understanding of the reasons for the underlying missing values and motivated

by an economic rationale.

Using the last observation at time t − 1 as a substitute when the data at time t are missing

is common in economics. Other imputation techniques exist, including mean imputation. Mean

imputation is also common for handling missing data. It involves replacing missing values with

the mean of the observed values for the same variable. Such data imputation is debatable from an

economic perspective, but from a statistical point of view, the technique is simple to implement

and preserves the mean of the variable. In the context of time series, the mean imputation

consists of calculating a moving average. Considering the k − 1 values observed over a time

window from t − k to t − 1, the mobile average imputation can be written as follows:

(pit) =

 {pit} if mit = 0

{pit} if mit = 1
, (2)

where pit is the mean value of the elements {pit|mit = 0andt ∈ [t − k, t − 1]}.

Extreme values are often present in economic databases. If these values are interpreted as

outliers, then it is important to remove them or at least reduce their influence. Indeed, outliers

can have a significant effect on the robustness of the estimations. Two approaches can be used to

improve the quality of the data and thus make the statistical analyses more reliable: trimming

and winsorization. From a given quantile threshold qα, trimming removes the extreme values

from the dataset, whereas winsorization replaces those extreme values with the α percentile

value.
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In the context of market data analysis, considering extreme variations as noise is debatable.

Indeed, those variations are more likely to be related to economic events than accounting errors.

Therefore, winsorization is better adapted than trimming, as replacing extreme data values with

percentile values reduces the influence of these values without completely omitting them. More

formally, winsorization can be written as follows:

(pit) =

 {pit} if |pit| ≤ qi
α

{qi
α} if |pit| > qi

α

, (3)

where qi
α is the α percentile value of the element i.

Data aggregation usually requires normalization because indicators often have different sets

of definitions. Additionally, analysis often focuses on returns, not raw prices, further reducing

the need for normalization.

However, combining elements from different probability distributions can be challenging in

statistics, and normalization methods such as standardization (z score) can help address this

issue. Here, the normalized data can be written as follows:

(pit) = {(pit − µpit)/σpit}, (4)

where µpit
and σpit

are the mean and the standard deviation of raw prices pit, respectively.

3.2. Weights

In economics, weights significantly impact the final indicator in a benchmarking framework,

and various methods are used to assign weights. These methods range from using market data

to statistical analysis, but they all reflect a judgment about which factors are most important.

While some rely solely on statistics, others incorporate expert opinions on influential components.

Alternatively, other indicators are based on equal weighting. Equal weighting in composite

indicators treats all variables as equally important. This approach is simple, but it can mask a

lack of deeper justification and lead to a nonrepresentative indicator.

Capping weights are an optional step when constructing a composite indicator. A capped

composite indicator limits the influence of any single element within the indicator. Even if

an element dominates the market, its weight in the indicator is capped at a predetermined

maximum. The process consists of four steps: (i) each element’s weight is based on a given

economic factor (e.g., its market share), (ii) if any element’s weight surpasses a set limit (i.e.,

threshold being equal to ωmax), then its weight is reduced to ωmax, (iii) the excess weight is then

divided equally or proportionally among the remaining elements, and (iv) if this redistribution

causes other elements to exceed the cap, then Steps (ii) - (iv) are repeated until all the elements

stay within the weight limit. The weights can be written as follows:

ωi(t) = EFi(t)∑N
i=1 EFi(t)

, (5)
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where ωi(t) and EFi(t) represent the weight and the economic factor of element i at time t,

respectively. By definition, we have ∀i ∈ {1, ..., N}, ωi(t) ∈ [0, 1] and
∑N

i=1 ωi(t) = 1.

Capping a composite indicator has advantages and disadvantages. On the one hand, capping

prevents a single element from swaying the overall indicator. In addition to the fact that capping

the weights of an indicator ensures the representativity of an entire set of elements, it can also

promote its stability by mitigating the influence of any single element. Indeed, capping reduces

the indicator’s sensitivity to extreme observations relative to a single element having a very

large weight. On the other hand, cap weighted indicators do not always accurately reflect

the real set of elements. For example, most traded raw materials do, in fact, have greater

influence on the commodity market than others do. Furthermore, capping weights have an

impact on the distribution of weights. Reducing the weights of elements whose weights exceed

a certain threshold implies increasing the weights of other elements. The way in which weights

are redistributed (equidistributed or proportional) is therefore crucial.

The way a composite index prioritizes its subindicators is determined by the weights assigned

to each of them. Several weighting methods coexist to construct price indices. Trade weighting,

which is commonly used for commodity price indices, assigns higher weights to components with

a larger share in overall trade. Equal weighting, where each subindicator has the same weight,

is also an option. In addition, capping the weights within a specific range can be useful to avoid

situations where a single dominant factor overly influences the entire index. Furthermore, the

way to redistribute the surplus to other weights can depend on the other weight values or not.

The choice of weighting method significantly impacts the final value of the composite index.

By comparing different versions of the same index calculated with various weighting methods,

one can explore how the variability in weights affects the overall score. This analysis helps to

evaluate the sensitivity of the index to these weighting choices and ultimately strengthens its

robustness.
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4. Constructing an energy transition metal price index

The forthcoming section is dedicated to the development of a comprehensive and robust price

index representative of the critical metals market. The index construction is divided into three

key steps. First, we define the components that constitute the index, outlining the critical raw

materials to be considered and their trading codes. Second, we describe the sample selection

in terms of time coverage and frequency. Third, we discuss the different weighting factors and

weighting schemes that can be used to aggregate components of a price index.

4.1. Data selection process

To identify the metals and minerals critical for the energy transition, it is important to clarify

several definitions, including the distinction between minerals, metals and materials. Minerals

are naturally occurring inorganic elements or compounds with unique chemical compositions

and crystal structures that serve as the building blocks of rocks (aggregates of minerals) and

ores (economic rocks). Metals are a subset of minerals with specific chemical elements or alloys

characterized by properties such as luster, malleability, ductility and conductivity. Metals are

extracted from ores, refined and used in various applications (ICMM, 2024). Materials, in

turn, include a wider range of substances than metals do, including ceramics, polymers and

composites. In most applications, the term "minerals" refers to the extraction stage, whereas

"metals" and "materials" refer to the refining stage. In this study, we use the broader terms

"metal" or "material."

Regarding key materials for energy transition technologies, we used the International Energy

Agency’s (IEA) Critical Minerals Data Explorer 2024a. This database makes publicly available

global demand projections for critical energy transition metals. We retrieved 29 metal price

series from the 31 reports in the IEA database. In fact, we have no data for "boron", and the

data found for zirconium are of insufficient quality to be included. We cover six sectors: electric

vehicles (11), electricity networks (2), grid battery storage (7), hydrogen technologies (6), solar

PVs (15), and wind (10). Table 1 underlines the metals in the clean energy sectors.

Importantly, not all of these metals are considered "critical" by countries. The concept

of metal criticality is not universal. A metal is considered "critical" if it is of high economic

importance and/or faces a high risk of supply disruption due to factors such as geographical

concentration, limited reserves or lack of affordable substitutes. Furthermore, criticality extends

beyond the energy transition sectors to strategic industries such as digital technology, aerospace

and defense (European Commission, 2023). For example, a smartphone can contain up to 50

different metals, each contributing to its compact size, lightweight and functionality (ibid). Con-

sequently, this study focuses on metals that are critical to the clean energy sectors and related

technologies. Of the 29 metals selected, 23 are identified as critical for the European Union

(European Commission, 2023), and 26 are identified as critical for the United States (U.S. Geo-

logical Survey, 2022)(Table A, Appendix).
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Table 1: Metals in the clean energy sectors

Electric Vehicle (EV):

Cobalt, Copper, Dysprosium (REE), Graphite, Lithium, Manganese,
Neodymium (REE), Nickel, Praseodymium (REE), Silicon and Terbium
(REE);

Electricity Networks: Copper and Aluminium;

Grid battery storage: Cobalt, Copper, Lithium, Manganese, Nickel, Silicon and Vanadium;

Hydrogen technologies:
Cobalt, Copper, Iridium (PGM), Nickel, Platinum (PGM), Yttrium (REE)
and Zirconium**;

Solar PV:
Arsenic, Cadmium, Copper, Gallium, Germanium, Indium, Lead,
Molybdenum, Nickel, Selenium, Silicon, Silver, Tellurium, Tin and Zinc;

Wind:

Boron*, Chromium, Copper, Dysprosium (REE), Manganese, Molybdenum,
Neodymium (REE), Nickel, Praseodymium (REE), Terbium (REE) and
Zinc.

Notes: The list of critical metals for the clean energy transition sectors is provided by the IEA (2024a). Please
note that REE stands for rare earth elements, PGM for platinum group metals and PV for photovoltaics. Finally,
* indicates that we were unable to find the data, while ** indicates that the quality of the data was insufficient
to be included in our index.

Regarding the price series selected for each metal, we evaluated approximately one hundred

series. To differentiate between them, we applied several "selection rules."

First, we favored metal series that are traded on a global exchange. When these series were

unavailable, we turned to the Chinese export price series, noted as free on board FOB). Indeed,

not all metals are traded on global exchanges, as many are traded over the counter (OTC). The

Shanghai Metal Market is the major price reporting agency (PRA) for minor metals, and their

prices serve as a benchmark for financial investors. The SMM provides metal prices for China and

its provinces, as well as its export metal prices. We select export prices when possible to better

account for worldwide dynamics while excluding Chinese internal demand factors. This latter

point is important, as China produces many metals, but a substantial share of this production is

consumed domestically.1 Additionally, we focused on Chinese export prices rather than foreign

import prices (i.e., cost, insurance, and freight price (CIF)), as the metal market is characterized

by strong market concentration, and China is one of the biggest actors. For example, China

extracts 43% of the rare earth elements and even refines 70% of the latter globally (European

Commission, 2023). Therefore, we prefer to rely on the producer side, especially as the data

provided by the SMM have better quality, with series having daily price variations, compared

with foreign import series.

Second, after differentiating on the basis of whether the metal is traded on a global exchange

or if it is a Chinese export price, we further discriminate between series on the basis of their

daily price variations and/or their historical coverage. In simple terms, we prefer series that

exhibit daily price variations and have long historical coverage. For example, regarding the rare

1The pricing dynamics between Chinese export prices of metals and domestic prices are aligned. The dis-
crepancy in nominal values is because transactions involving metals abroad are predominantly conducted in US
dollars, whereas domestic exchanges are conducted in renminbi.
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earth series, we had the choice between the rare earth FOB prices in oxide or metal form. We

selected the rare earth elements in oxide form, as these series have a higher trading volume than

their counterparts do (Proelss et al., 2018).

Third, we also discriminated between series on the basis of the providers. For instance, we

had two silver prices that share exactly the same dynamics, but one series is provided by the

London Bullion Market Association (LBMA) and one by Handy & Harman (a manufacturer of

silver). We preferred the series from the LBMA as it is an independent precious metal authority.

Finally, the final criterion for selecting our series is based on the shape of the metal traded.

We favored a metal shape that is closest to its utilization in clean energy technology. To illus-

trate, we had several series of silicon with different degrees of purity, i.e., #2202, #3303, #441,

and #553. As the silicon used in solar PVs is the highest purity silicon at 99.99% (SCRREEN,

2020), we chose the series with the purity level that comes closest to this value, which is #2202

with 99.58%. The only exception to our selection criteria is for lithium, where we selected the

Chinese domestic price, as we do not have access to the FOB prices, and the series traded on the

LME only starts in 2021. All the series discriminated are disclosed in Table B in the Appendix.

All of the selected metal prices are spot prices. Spot prices provide greater insights into the

real drivers of the markets by avoiding speculative behaviors (IRENA, 2023). Additionally, many

series simply do not have future prices because, as previously mentioned, many metals are not

traded on a global exchange, e.g., graphite or rare earth elements. Furthermore, the frequency

of our metal series is mostly daily prices. The exception is graphite, which is available weekly.

While we could have constructed an index with a daily frequency by excluding the graphite

price series, we preferred to keep this metal and construct our index on a weekly frequency. This

choice is justified for several reasons. First, a weekly frequency better matches the characteristics

of metal prices. Indeed, many minor metals do not experience daily price fluctuations because

of the limited number of exchanges. Second, keeping the graphite series is necessary because

this metal is crucial in the construction of EV batteries. Finally, constructing a weekly index

allows us to handle the time-shifting problems between different exchange places/price reporting

agencies and to avoid autocorrelation issues. Moreover, the index is constructed using the return

of the weekly metal prices, enabling us to handle different currencies effectively. Indeed, all series

are in USD, except for lithium, which is in Renminbi. Table 2 lists all the selected metal series.

Finally, to construct an index (as described in Section 3) that properly represents the metal

market, we need to weigh the metal components of the index in terms of their trading volumes.

This step is necessary because the metal market is characterized by strong heterogeneity; e.g.,

the trading volume of copper is not the same as that of dysprosium. However, we do not have

these data, especially for minor metals that are traded over the counter. We have therefore

approximated trade volumes by using global export flows for each metal. The choice of export

flows rather than import flows is in line with our focus on the producer side and ensures consis-

11



tency with our previous data selections.

The global export flows of the metals have been exported from the BACI database, con-

structed and updated annually by Gaulier and Zignago (2010). This database represents a

refinement of the UN Comtrade database. The UN Comtrade database is the most compre-

hensive worldwide trade database containing detailed import and export statistics. However,

this latter database is also subject to several well-known limitations, including the presence of

outliers, missing values and asymmetrical bilateral relationships between import and export val-

ues. The BACI database addresses these shortcomings by addressing the issue of missing values,

matching export and import data and standardizing unit values (Gaulier and Zignago, 2010).

This latter aspect is of particular significance, as to ascertain the metal weight on the index, the

volume of the export metal product is divided by the total volume of the export of all metals.

Consequently, it is essential to employ the same unit of measurement.

To identify the product codes for each metal, we employed the Harmonized System (HS)

Codes, specifically HS17. The Harmonized System is an internationally standardized product

classification system maintained by the World Customs Organization (WCO). The system is

employed to identify products for exports and imports, assess the associated duties and taxes,

and compute trade statistics (ITA, 2024). Each HS code is a multidigit number, with a maxi-

mum of six digits. The first two digits represent the chapter, which serves to indicate a broad

category of goods. The subsequent two digits represent the heading, which provides a more

specific classification. Finally, the last two digits represent the subheading, which provides the

most detailed product lines.

To ensure maximum precision for each metal, we used the six-digit HS codes that most closely

match the metal price series (Table 3 for the HS codes per metal). The codes were chosen on

the basis of three criteria.

First, if the form of the metal traded is known, we chose the product code that includes that

form. For example, the traded forms of the aluminum price series are ingots, bars and sows.

Therefore, we selected the HS codes 760120, 760410 and 760429, which include ingots (i.e., the

unwrought form) and bars. In this example, as we have several code products for one metal, our

export volume is the average of all selected HS codes.

Second, when the form of the metal traded is unknown, we used other characteristics, such

as the metal content or purity, to identify the appropriate code. For example, we did not

know the form of the traded silicon, but we knew that its content is 99.58%. Therefore, we

chose the HS code "Silicon: containing less than 99.99% silicon by weight". When the choice

was not straightforward, we used external resources. We know that gallium and germanium

are traded at high purity levels, suggesting unwrought forms. This information comes from

"Western Minmetals", a company specializing in these metals, and is cross-checked with the
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Zauba database, which lists all exports and imports to India, along with the associated HS

codes. Overall, where possible, we tended to select the HS code that includes the unwrought

form of the metal. This form is commonly traded, falls in the middle of the supply chain (neither

in the initial extraction phase nor in the final refining phase) and allows for a better comparison

with other metals. For a correct representation of the market, it is appropriate to consider the

volume of metal exchanged at the same stage of the value chain.

Finally, for several minor metals with limited exchanges, we have no choice of HS code, as

there is only one code. This is notably the case for rare earths, tellurium and selenium.

By following these criteria, we ensure that our choice of HS codes accurately reflects the trad-

ing forms and characteristics of the metals, thus facilitating accurate and meaningful analysis of

their price series.

In summary, in this section, we explained how we defined a critical metal for the energy

transition. We then explained the data selection process for the metal price series. Finally, we

explained how we identified the "right" HS code of metal transactions to effectively weight the

index.
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Table 2: Metals in the index

Name Series Tickers URL Type Currency Unit Freq. Provider Database Start date
Aluminium LME-Aluminium 99.7% Cash U$/MT LAHCASH(P) link Spot USD t D LME Datastream 31/07/1957
Arsenic China Arsenic Metal 99% FOB ARCNJQLL AMTL NA Spot, FOB USD t D NA Bloomberg 02/07/2004

Cadmium
Europe Cadmium Ingot 99.99% In
warehouse Rotterdam CMEUSLKG AMTL link Spot USD lb D Asian Metal Bloomberg 01/02/2006

Chromium China Chromium Metal 99% FOB C9CNRLJI AMTL link Spot, FOB USD t D Asian Metal Bloomberg 12/01/2001
Cobalt LME-Cobalt Cash LCOCASH(P) link Spot USD t D LME Datastream 22/02/2010
Copper LME-Copper Grade A Cash U$/MT LCPCASH(P) link Spot USD t D LME Datastream 30/01/1957
Dysprosium China Dysprosium Oxide 99% FOB DMCNGTMR AMTL link Spot, FOB USD kg D Asian Metal Bloomberg 20/04/2001
Gallium China Gallium Metal 99.99% FOB GACNDQSD AMTL link Spot, FOB USD kg D Asian Metal Bloomberg 12/01/2001
Germanium China Germanium Metal 99.99% FOB GECNMVKY AMTL link Spot, FOB USD kg D Asian Metal Bloomberg 12/01/2001
Graphite Graph spherical 99.9 FOB China MGRA036(P) link Spot, FOB USD t W Fastmarkets MB Datastream 30/03/2012
Indium China Indium Ingot 99.99% FOB IUCNNWTD AMTL link Spot, FOB USD kg D Asian Metal Bloomberg 12/01/2001
Iridium JM Iridium London U$/Troy Oz JMIRIEU(P) link Spot USD t oz D JM Datastream 01/07/1992
Lead LME-Lead Cash U$/MT LEDCASH(P) link Spot USD t D LME Datastream 05/07/1993
Lithium Lithium Metal =99%, Battery Grade SMINLTM(P) NA Spot, Domestic. CNY t D SMM Datastream 01/06/2012

Manganese
SMM Electrolytic Manganese Metal
Spot Price Daily SMM-EMM-USD link Spot, FOB USD t D SMM Reuters 01/06/2012

Molybdenum
Europe Molybdenum Oxide 57% In
warehouse Rotterdam MBEUDGDZ AMTL link Spot USD lb D Asian Metal Bloomberg 26/10/2005

Neodymium China Neodymium Oxide 99% FOB NDCNDLXH AMTL link Spot, FOB USD t D Asian Metal Bloomberg 20/04/2001
Nickel LME-Nickel Cash U$/MT LNICASH(P) link Spot USD t D LME Datastream 20/07/1993

Platinum
JM Platinum London U United States
Dollar Per Troy Ounce JMPLTER(P) link Spot USD t oz D JM Datastream 01/07/1992

Praseodymium China Praseodymium Oxide 99% FOB PECNTBXR AMTL link Spot, FOB USD t D Asian Metal Bloomberg 04/02/2005

Selenium
Europe Selenium Powder 99.9% In
warehouse Rotterdam S8EUUTZG AMTL link Spot USD lb D Asian Metal Bloomberg 21/12/2005

Silicon China Silicon Metal 2-2-02 FOB S6CNPPWK AMTL link Spot, FOB USD t D Asian Metal Bloomberg 20/10/2011
Silver LBMA Silver Price USD/t oz DELAY SILVUSL link Spot USD t oz D ICE Datastream 02/01/1968

Tellurium
Europe Tellurium Metal 99.99% In
warehouse Rotterdam TEEUUQPU AMTL link Spot USD kg D Asian Metal Bloomberg 16/05/2008

Terbium China Terbium Oxide 99.9% FOB TBCNFWBZ AMTL link Spot, FOB USD kg D Asian Metal Bloomberg 04/02/2005
Tin LME-Tin 99.85% Cash U$/MT LTICASH(P) link Spot USD t D LME Datastream 31/01/1957

Vanadium

China Vanadium Pentoxide Flake
98%min In warehouse Rotterdam
USD/lb V2O5 VNEUJOQT AMTL link Spot USD lb D Asian Metal Bloomberg 30/11/2005

Yttrium
China Yttrium Oxide 99.999%min FOB
USD/kg YTCNNKUM AMTL link Spot, FOB USD kg D Asian Metal Bloomberg 27/08/2010

Zinc LME-SHG Zinc 99.995% Cash U$/MT LZZCASH(P) link Spot USD t D LME Datastream 31/01/1957

Notes: This table pictures all the metal prices included in the CRMI. In the column on units, ’t’ stands for tonnes, ’kg’ for kilograms, ’gm’ for grams, ’lb’ for pounds, and ’t oz’ for troy
ounces. In the frequency (Freq.) column, ’D’ stands for daily prices and ’W’ stands for weekly prices.
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Table 3: HS17 Codes by Metal

Series Unit Form HS17 Rule

Aluminum t Ingots, t-bars, and sows 760120, Aluminum: unwrought, alloys; 760410, Aluminum: (not alloyed), bars, rods

and profiles; 760429, Aluminum: alloys, bars, rods and profiles, other than hollow

A

Arsenic t Unknown, but high-purity metal 280480, Arsenic B

Cadmium lb Ingots 810720, Cadmium: unwrought, powders A

Chromium t Unknown, but high-purity metal 811221, Chromium and articles thereof: unwrought chromium, powders B

Cobalt t Cathodes (broken or cut), ingots, briquettes,

rounds and coarse grain powder

810520, Cobalt: mattes and other intermediate products of cobalt metallurgy,

unwrought cobalt, powders

A

Copper t Cathodes 740311, Copper: refined, unwrought, cathodes and sections of cathodes A

Dysprosium kg Oxide 284690, Compounds, inorganic or organic (excluding cerium), of rare-earth metals,

of yttrium, scandium or of mixtures of these metals

C

Gallium kg Unknown, but high-purity metal 811292, Gallium, germanium, hafnium, indium, niobium (columbium), rhenium and

vanadium: articles thereof, unwrought, including waste and scrap, powders

B

Germanium kg Unknown, but high-purity metal 811292, Gallium, germanium, hafnium, indium, niobium (columbium), rhenium and

vanadium: articles thereof, unwrought, including waste and scrap, powders

B

Graphite t Spherical graphite 250410, Graphite: natural, in powder or in flakes A

Indium kg Ingots 811292, Gallium, germanium, hafnium, indium, niobium (columbium), rhenium and

vanadium: articles thereof, unwrought, including waste and scrap, powders

A

Iridium t oz Sponges and ingots 711041, Metals: iridium, osmium, ruthenium, unwrought or in powder form A

Lead t Ingots 780110, Lead: unwrought, refined A

Lithium t Unknown, but battery grade 283691, Carbonates: lithium carbonate B

Manganese t Unknown, but electrolytic manganese 282090, Manganese oxides: excluding manganese dioxide B

Molybdenum lb Oxide 282570, Molybdenum oxides and hydroxides A

Neodymium t Oxide 284690, Compounds, inorganic or organic (excluding cerium), of rare-earth metals,

of yttrium, scandium or mixtures of these metals

C
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Nickel t Cathodes (full plate and cut), pellets,

briquettes and rounds

750210, Nickel: unwrought, not alloyed; 750610, Nickel: plates, sheets, strip and

foil, not alloyed; 750620, Nickel: plates, sheets, strip and foil, of nickel alloys

A

Platinum t oz Sponges and ingots 711011, Metals: platinum, unwrought or in powder form A

Praseodymium t Oxide 284690, Compounds, inorganic or organic (excluding cerium), of rare-earth metals,

of yttrium, scandium or mixtures of these metals

C

Selenium lb Powder 280490, Selenium C

Silicon t Unknown, but #2202 indicates 99.58% silicon

content

280469, Silicon: containing by weight less than 99.99% silicon B

Silver t oz Various shapes 710610, Metals: silver powder; 710691, Metals: silver, unwrought, (but not powder);

710692, Metals: silver, semimanufactured

B

Tellurium kg Ingot 280450, Boron: tellurium C

Terbium kg Oxide 284690, Compounds, inorganic or organic (excluding cerium), of rare-earth metals,

of yttrium, scandium or of mixtures of these metals

C

Tin t Ingots 800110, Tin: unwrought, not alloyed A

Vanadium lb Pentoxide Flake 282530, Vanadium oxides and hydroxides A

Yttrium kg Oxide 284690, Compounds, inorganic or organic (excluding cerium), of rare-earth metals,

of yttrium, scandium or mixtures of these metals

C

Zinc t Ingots, jumbos 790111, Zinc: unwrought, (not alloyed), containing by weight 99.99% or more of zinc A

Notes: The table displays the HS17 codes selected for different metals. We aligned the traded forms of these metals, as indicated in the price series, with their corresponding HS codes. The
codes were chosen on the basis of three criteria:

• (A) Known Form: When the shape of the traded metal is known, the selected product code corresponds to that form. For example, if a metal is traded as an ingot, the relevant
product code includes unwrought forms.

• (B) Unknown Form: In cases where the exact form is unknown, we use other characteristics to identify the appropriate code. For example, in the silicon series, although the form
is unclear, the silicon content is known to be greater than 99.58%. Therefore, we use the code for "Silicon: containing by weight less than 99.99% silicon."

• (C) Single Code: In cases where only one product code is available, the selection is straightforward. This is the case with rare earth elements, where a single code covers all rare
earth exchanges.
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4.2. Data sample

Owing to data availability issues across time and metals, there is a tradeoff between building

an index covering a large period of time and building an index including all metals that are

necessary for the energy transition.

The extent of missing data (see Table 4) varies considerably across time and metals. On the

one hand, more data are available for a larger sample of metals in the second half of the sample

from 2012 onward rather than earlier in the sample. On the other hand, data coverage is strong

for metals such as aluminum, cobalt, copper, iridium, lead, lithium, nickel, platinum, silver, tin

and zinc. It is weaker for arsenic, manganese, chromium, gallium, germanium, indium, silicon

and tellurium, especially before 2012.

In some cases, such as aluminum, cobalt, copper, nickel, platinum and silver prices, data are

missing because they were not collected before 2006 on a comprehensive basis. In other cases,

such as cadmium iridium, selenium, and tellurium prices, a lack of data indicates that markets

may have emerged in the early 2000s. In other cases, after 2012, missing values may be related

to events related to a specific market, such as a quotation interruption.

As most of the metal prices are not volatile, choosing to aggregate daily prices onto weekly

prices is an interesting option, in addition to the aforementioned points presented in the preceding

section 4.1. In doing so, data availability increases without losing too much information, enabling

better arbitrage. Indeed, the number of missing values decreases via the smoothing of the data

prices without eclipsing market events. Table 5 reports the data availability for the whole sample

at the weekly frequency.
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Table 4: Percent of critical materials with data availability - Global sample - Daily frequency

2000-2005 2006-2011 2012-2017 2018-2023
Aluminium 0 33 100 100
Arsenic 9 52 92 92
Cadmium 0 47 94 91
Chromium 22 52 92 91
Cobalt 0 27 100 100
Copper 0 33 100 100
Dysprosium 15 51 93 92
Gallium 22 52 92 92
Germanium 11 52 92 92
Indium 22 52 92 92
Iridium 0 33 100 100
Lead 0 33 100 100
Lithium 0 0 93 100
Manganese 0 0 86 92
Molybdenum 1 47 94 92
Neodymium 15 51 93 92
Nickel 0 33 100 100
Platinum 0 33 100 100
Praseodymium 3 51 93 92
Selenium 0 47 93 91
Silicon 0 3 92 91
Silver 0 33 100 100
Tellurium 0 32 92 92
Terbium 3 51 93 92
Tin 0 33 100 100
Vanadium 1 47 95 92
Yttrium 0 19 93 92
Zinc 0 33 100 100
Graphite 0 0 96 100

Notes: This table provides each critical materials availability per lustrum since 2000. Data availability is
calculated as the average of daily observations by periods. Percentage values are rounded up.

Focusing on a data sample from June 2012 to October 2023 with a weekly frequency, this

results in a dataset of 29 metals and 593 observations per mineral. The remaining missing

values appear to be missing not at random. Following the econometric approach of Diggle

(1989), we find that the probability of absence depends on the variable in question. Hence,

deleting observations is not an option; missing data must be imputed.

Various methods exist for imputing these missing values, each with advantages and disad-

vantages. In this context, the last observation carried forward (LOCF) method, as described in

Eq. (1), is the most appropriate. From an economic point of view, the best approximation of a

metal’s price at time t is its price at time t − 1. In addition, from an econometric perspective,

it is a simple and precise way to impute missing values in the case of a stationary process; it

also preserves variance and reduces attrition bias (see Section 4 for further details). Therefore,

missing values are replaced by the last observed value before the missing point.

Table 6 reports the descriptive statistics of the final sample. The results indicate that the

critical material returns have several similarities. The mean of returns is very close to 0, as is the

median. The distribution of returns is therefore centered at 0 and shows little asymmetry. Next,

the standard deviations are much larger than the means but of the same order of magnitude

for all the critical materials. On the other hand, the extreme values are very large compared

with the first two return moments. For all the critical materials, the assumption of a normal
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Table 5: Percent of critical materials with data availability - Global sample - Weekly frequency

2000-2005 2006-2011 2012-2017 2018-2023
Aluminium 0 34 100 100
Arsenic 24 97 97 96
Cadmium 0 97 98 95
Chromium 81 97 97 96
Cobalt 0 27 100 100
Copper 0 34 100 100
Dysprosium 73 96 97 96
Gallium 81 97 97 96
Germanium 28 97 97 96
Indium 81 97 97 96
Iridium 0 34 100 100
Lead 0 34 100 100
Lithium 0 0 93 100
Manganese 0 0 91 98
Molybdenum 3 98 98 96
Neodymium 73 96 97 96
Nickel 0 34 100 100
Platinum 0 34 100 100
Praseodymium 14 96 97 96
Selenium 1 98 98 96
Silicon 0 4 97 96
Silver 0 34 100 100
Tellurium 0 59 98 96
Terbium 14 96 97 96
Tin 0 34 100 100
Vanadium 2 98 98 96
Yttrium 0 22 97 96
Zinc 0 34 100 100
Graphite 0 0 96 100

Notes: This table provides each critical materials availability per lustrum since 2000. Data availability is
calculated as the average of weekly observations by periods. Percentage values are rounded up.

distribution of returns would be inappropriate. Overall, the critical material returns appear to

be homogeneous in cross-section, and all exhibit high volatility on average, with extreme price

variations.

Figure 1 shows the correlation between each pair of critical material returns. A correlogram

representation illustrates the relationships among related time series. The global level of corre-

lation is low, except for the pairs neodymium – platinum, dysprosium – tellurium and silicon –

platinum. These dependencies can be notably explained by industrial co-usage. For example, in

high-tech industries such as electronics and advanced automotive technology, neodymium and

platinum can be used together in various components. Neodymium is used in magnets for electric

motors, and platinum is critical in catalytic converters or fuel cell technology in hybrid or electric

vehicles. These overlapping industries can create synchronized demand shifts, contributing to

the correlation.
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Table 6: Descriptive statistics after data imputation

Obs. Mean Median St. Dev. Min Max
Aluminium 593 0.0005 0.0004 0.0241 -0.0862 0.1375
Arsenic 593 -0.0008 0.0000 0.0152 -0.0853 0.1974
Cadmium 593 0.0014 0.0000 0.0233 -0.1304 0.1250
Chromium 593 -0.0004 0.0000 0.0148 -0.0829 0.1303
Cobalt 593 0.0007 0.0000 0.0310 -0.1523 0.1317
Copper 593 0.0004 0.0007 0.0218 -0.0987 0.0914
Dysprosium 593 -0.0015 0.0000 0.0256 -0.1577 0.1593
Gallium 593 0.0006 0.0000 0.0278 -0.1052 0.1268
Germanium 593 0.0005 0.0000 0.0120 -0.0502 0.0872
Indium 593 -0.0008 0.0000 0.0229 -0.0909 0.1174
Iridium 593 0.0029 0.0000 0.0276 -0.0758 0.4089
Lead 593 0.0005 -0.0002 0.0255 -0.0788 0.1097
Lithium 593 0.0027 0.0000 0.0218 -0.1132 0.1564
Manganese 593 -0.0005 0.0000 0.0319 -0.2118 0.1766
Molybdenum 593 0.0013 0.0000 0.0340 -0.1308 0.1297
Neodymium 593 -0.0003 0.0000 0.0295 -0.1187 0.1750
Nickel 593 0.0012 0.0007 0.0478 -0.2563 0.8005
Platinum 593 -0.0004 -0.0003 0.0270 -0.2324 0.0918
Praseodymium 593 -0.0004 0.0000 0.0241 -0.1039 0.1333
Selenium 593 -0.0024 0.0000 0.0341 -0.1837 0.2803
Silicon 593 0.0005 0.0000 0.0352 -0.1232 0.4874
Silver 593 0.0001 -0.0002 0.0316 -0.2499 0.1238
Tellurium 593 -0.0012 0.0000 0.0223 -0.1684 0.1612
Terbium 593 -0.0006 0.0000 0.0304 -0.1294 0.1509
Tin 593 0.0009 0.0009 0.0301 -0.1371 0.1435
Vanadium 593 0.0008 0.0000 0.0339 -0.1379 0.1498
Yttrium 593 -0.0047 0.0000 0.0309 -0.2041 0.1391
Zinc 593 0.0008 0.0026 0.0280 -0.0970 0.1376
Graphite 593 -0.0010 0.0000 0.0116 -0.1242 0.0596

Notes: This table reports descriptive statistics of critical materials returns after data imputation (LOCF
method).

4.3. Weighting schemes

As discussed above, we weighted the metals by their export trading volumes. However,

these trade volumes are not equally distributed: some materials, such as copper and aluminum,

are much more traded than neodymium and dysprosium. In addition, critical material returns

exhibit extreme values (see the descriptive statistics in subsection 4.2). Consequently, the weights

need to be capped to ensure the stability of the index, mitigating the influence of any single

material. Moreover, as some materials are far more traded than others are, capping weights

also ensure the representativity of the entire set of critical materials. Hence, following the

methodological framework related to the design of the weighting scheme (see subsection 3.2),

the best option is to choose weight capping. Specifically, this weight capping is performed

with a threshold of 20%, with a proportional redistribution of the weights to avoid altering the

distribution of the weights.

Figure 2 shows the distribution of weights allocated to each metal according to their export

trading volume. The distribution of weights is very uneven: copper and aluminum alone account

for 35% of the total index weighting. Next, platinum, cobalt, tin, nickel, silver and zinc account

for approximately 5-10% of the index, whereas the remaining metals have a lower weighting.

This weighting scheme is consistent with export trade data and highlights the importance of

capping for the representativeness of the index.
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Figure 1: Correlogram of critical material returns
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5. The CRMI - The Critical Raw Materials Index

The most common methodology for constructing a commodity price index involves a weighted

linear average of the returns associated with each raw material price series. This approach

assigns weights wi(t) to each raw material i at time t on the basis of its relative importance

within the market, typically determined by market share or production volume. Using the

weights previously computed from metal export volumes and the commodity returns series, the

CRMI(t) growth rate at a given time period t can be expressed as:

∆CRMI(t) =
N∑

i=1
ωi(t) × Ri(t), (6)

where ωi(t) and Ri(t) represent the weight and return of mineral i at time t, respectively.

This linear functional form is particularly advantageous when dealing with commodity return

data containing a significant number of zero or near-zero observations. Unlike some alterna-

tive aggregation methods, linear functions exhibit less sensitivity to extreme values, ensuring a

more robust representation of the underlying price dynamics (e.g., weighted arithmetic mean vs.

weighted geometric mean).
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Figure 2: Trade weighting and capping
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Notes: This figure illustrates the distribution of weights across metals. The weights are computed from the
volume of trade of each mineral. Weights are limited to a maximum of 20% of their total value, and any excess
is distributed proportionally among the remaining weights.

A common practice is to set the index value for a specific year (e.g., 2012) equal to 100.

This rescaling facilitates easier comparison and interpretation of the index across different time

periods. By analyzing the changes in the index over time, one can readily identify trends in

overall mineral prices. In matrix form, we can rewrite Eq. (6):

CRMI2012 = 100 × (1 + ωT R), (7)

where ω and R represent the weight and return vectors, respectively.

Following this methodological approach, we compute the CRMI and convert it to base 100.

Figure 3 presents the CRMI at a weekly frequency from 2012 through 2024.
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Figure 3: The CRMI from 2012 to 2024
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Notes: This figure illustrates the CRMI (base 100 = 2012). The weighting methodology is as follows: trade-
weighted, a cap of 20% and a proportional redistribution of weights.

The index is characterized by several spikes corresponding to key events related to the crit-

ical materials market. First, the 2012–2016 period was characterized by a general decline in

commodity prices. During this period, critical materials were no exception among commodi-

ties. Consistently, the CRMI significantly decreases by approximately 40%. This drop can be

attributed to slowing economic growth and reduced aggregate demand in major economies such

as China, compounded by the drop in oil prices in mid-2014. During this period, the CRMI

experienced a significant decline of approximately 40%. This can be attributed to the slowing

economic growth and reduced aggregate demand in major economies such as China (Cashin

et al., 2017), compounded by the drop in oil prices in mid-2014 (Stocker et al., 2018). China’s

economic slowdown, caused by a shift from export-led to domestic demand and from manu-

facturing to services, has negatively impacted global markets, particularly metal markets. The

decline in Chinese demand for copper, a key metal used in buildings and infrastructure, led

to a significant drop in copper prices (Norland, 2016). Additionally, the decline in oil prices,

driven by factors such as increased US shale oil production and policy changes by OPEC, fur-

ther impacted the metal markets because of their energy-intensive production (Stocker et al.,

2018). The global economy’s recovery from 2016 to mid-2018 was subsequently driven by strong

domestic demand in major economies such as the United States, the Euro area, Japan, and

China (IMF, 2017). This recovery was further supported by significant advancements in clean

energy technology, particularly solar energy, which experienced a surge in investment, especially

23



in China (Louw, 2018). This combination of factors led to a significant increase in metal prices,

as reflected in the CRMI, which rose by approximately 60% during this period. Next, the spikes

of the CRMI during the period of 2018–2020 are related to the trade tensions between the

US and China. Specifically, the trade war between the US and China escalated in 2018, with

both countries imposing tariffs on each other’s goods (Reuters, 2020). This led to heightened

uncertainty, slower growth, and reduced demand for industrial metals, particularly in China

(Itakura, 2020). The depreciation of the yuan relative to the dollar made dollar-priced metals

more expensive for Chinese buyers, further reducing demand (Hobson, 2019). As a result, the

CRMI prices fell significantly from mid-2018 to 2020. Recently, the spikes over the period 2020–

2022 correspond to the COVID -19 pandemic and the Russian–Ukrainian war. First, a sharp

drop in critical material prices was experienced due to a sudden collapse in demand during the

pandemic. Conversely, the Russian–Ukrainian war and the end of the pandemic are associated

with a significant increase in critical material prices due to increased uncertainty, supply chain

disruption, and sanctions-induced shortages of materials supplied by Russia (Baffes and Nagle,

2022). Since then, the CRMI has fallen significantly because of an oversupply of various metals

and weakening demand, particularly in the EV market. This is particularly the case for the

price of lithium, which has fallen by half since 2022 and 2023 (McClelland, 2024). These effects

have been exacerbated by the overall slowdown in demand in response to monetary tightening

in advanced economies (Jeetendra and Kaltrina, 2024).

6. Validation

Following Caldara and Iacoviello (2022)’s index validation approach, this section presents two

exercises aimed at ensuring the validity of the CRMI. First, we verify that the CRMI provides a

plausible quantification of the historical evolution of critical material prices. Second, we compare

the CRMI with similar economic time series.

6.1. Plausibility

The first objective of the validation section is to analyze whether the price dynamics of the

Critical Raw Material Index correctly reflect changes in the dynamics of the critical metals mar-

ket. Our plausibility test relies on the logic that extreme values in the index must capture the

most important events related to the critical metals market of the past 10 years, in the way

these events were perceived by the contemporaries. We identify surprises having a negative or

positive effect on the index as the 5th and 95th percentiles of the returns distribution, respec-

tively. Figure 4 illustrates the event analysis based on the graphical analysis of surprises.
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Figure 4: Critical Raw Material Index (log price returns)
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Notes: The log-returns of the CRMI are analyzed at a monthly frequency to enhance the readability of extreme
events. These extreme events are defined as the values exceeding the dashed red lines, which represent the 95th
and 5th percentiles of the return distribution.

The CRMI has undergone significant changes in response to both external global events and

internal market dynamics. In June 2013, the Federal Reserve signaled the potential tapering of

its quantitative easing (QE) program, which had a negative impact on market conditions. The

Paris attacks in November 2015 also had a notable negative effect on market sentiment. Con-

versely, the election of Donald Trump in November 2016 increased the return of the index. In

August 2017, China’s environmental crackdown drove up the prices of several rare earth metals

and aluminum. Tighter environmental regulations and the closure of illegal smelters reduced

production, leading to this price spike (Daly, 2017). The COVID-19 pandemic in March 2020

caused a sharp decline in the index, whereas the election of Joe Biden in November 2020 marked

another "positive return event". February 2021 was significant, as China began a stockpiling

strategy following the CHIPS and Science Act in the United States in January 2021 (CRS, 2023;

Cobalt Institute, 2022; Mayger and Dai, 2021). In January 2022, sanctions against Russia led

to a spike in aluminum prices (Onstad, 2022). The Russian–Ukrainian war and the nickel crisis

in March 2022 further disrupted markets. In June 2022, China’s economic slowdown, combined

with weaker industrial demand, rising interest rates and inflation in developed economies, had

a markedly negative impact on the index (Jones, 2022). This trend continued until July 2022,

reflecting the ongoing challenges in the global market.

These results are encouraging, as the extreme movements in the index can be attributed to

identifiable events, either due to global economic shocks or internal disruptions within the metal
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markets. This is consistent with recent findings in the financial literature.

6.2. Comparability

The second objective of the validation section is to compare our index with other financial

products and assess its comparative advantages. We start by comparing our index with the

IMF’s Energy Transition Metal (ETM) index, which, to the best of our knowledge, is the price

index most closely related to the CRMI. Our analysis shows that our index addresses several

limitations inherent in the construction of the ETM Index. Empirically, we show that the CRMI

captures different information than the ETM does. Additionally, we discuss the comparative

advantages of our index with the new IEA energy transition mineral price index. We then

compare the CRMI with oil prices to ensure that metal prices are not driven entirely by the oil

market. This comparison confirms that our index does not simply reflect fluctuations in oil prices.

Table 7: Comparing the construction of the CRMI and ETM Index

CRMI ETM Remark
Metals
coverage 29 16

In ETM, several key metals are
missing.

Selection IEA (2024) Ad-hoc In ETM, ad-hoc selection of metals.

Frequency Weekly Monthly
ETM has a lower frequency than
CRMI.

Starting date 2012 M6 2012 M6 NA.
Base 100: 2012 100: 2016 NA.
Currency USD / CNY USD NA.

Methodology
Trade-weighted with a
cap (prop) Trade-weighted In ETM, no capping strategy.

Trade database BACI UN Comtrade BACI enhances UN Comtrade.
Exchange
volume proxy Export Import

Export >> Import → Oligopolistic
nature of metal markets.

Average weight 2012-2022 2014-2016
For CRMI: average weight for the
whole period.

HS
nomenclature HS17 HS12

For CRMI: more recent version of the
HS nomenclature.

HS code
selection

The shape of the metal
in the index series. Expert judgements

CRMI data selection is better
motivated than ETM data.

Sub-indexes
By energy transition
sectors No sub-indexes CRMI provides sub-indexes.

Robustness

Equal-weighted;
Trade-weighted;
Trade-weighted with a
cap (equi);
HHI-weighted;
Winsorisation No robustness checks CRMI is more robust than ETM.

Notes: The ETM index stands for the Energy Transition Metals Index, which is a sub-index of the Primary
Commodity Price Index (PCPI). The latter is implemented and updated by the IMF.

To compare the CRMI with the ETM Index, we must first define the Energy Transition

Metals (ETM) index. This index is a subindex of the Primary Commodity Price Index (PCPI),

a weighted commodity price index from the IMF. The PCPI, which began in January 1992, is

expressed in USD, has a monthly frequency, and is constructed with a base value of 100 for

2016. It covers 68 commodities across four asset classes: energy, agriculture, fertilizers, and

metals. The PCPI includes metal prices for both base metals (e.g., aluminum, cobalt, copper,
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and iron) and precious metals (e.g., gold, silver, palladium, and platinum). Several subindexes

are constructed within the PCPI, including the Metals Price Index (PMETA), the Precious

Metals Index (PPMETA), and the ETM Index (IMF, 2019).

More specifically, the ETM Index covers sixteen metal prices and began in 2012 (see Table

C in the Appendix). The weighting scheme is based on the average global metal import volume

from 2014 to 2016, with data sourced from the UN Comtrade database. The product codes are

selected from the HS12 6-digit nomenclature and are based on expert judgment. Specifically, two

rules are applied for the selection of HS codes: (1) a match between the product description and

the commodity group and (2) the selected HS codes focus on raw materials or minor processing,

excluding finished products (ibid).

There are several differences between the CRMI and the ETM Index, as highlighted by Table

7. First, the CRMI has broader coverage of metal prices, including 29 metals compared with

the 16 covered by the ETM. Notably, some critical and strategic metals essential for the energy

transition are missing from the ETM. These include graphite for electric vehicles, iridium for

hydrogen production, and gallium and germanium for solar PVs. The absence of these metals

is significant, particularly given their strategic importance and the global attention they have

attracted due to recent geopolitical tensions involving China. In response to U.S. semiconductor

restrictions (Weaver, 2022), China imposed export controls on gallium and germanium in August

2023 (Harper, 2023) and graphite in October 2023 (Benson and Denamiel, 2023).

Second, the CRMI is more rigorously motivated in its selection of energy transition metal

prices than the ETM Index is. The CRMI’s selection is based on the International Energy

Agency’s (2024) database, providing a sound basis for its metal selection, whereas the ETM’s

selection appears to be more ad hoc. In addition, the CRMI offers greater granularity, as it is

available on a weekly basis compared with the monthly frequency of the ETM. This increased

frequency is crucial for a more in-depth assessment of the dynamics of metal prices in financial

markets. It also improves the suitability of the index for econometric models, as it provides a

sufficient number of observations for the parameters to converge.

Third, regarding the weighting methodology, we find it preferable to use the BACI database,

as it has been corrected for several biases (previously highlighted in section 4), allowing us to use

export data. Additionally, the HS code selection for the ETM is less rigorous than ours is, and we

identified a significant limitation in the ETM weighting methodology: it is performed without

a cap. This is problematic given the substantial heterogeneity in exchange volumes between

metals. For example, copper constitutes 34% of the ETM Index, whereas rare earths make up

only 0.5%. In comparison, the CRMI employs a cap of 20% with a proportional redistribution

of weights, resulting in copper and rare earths having more balanced weights (Table D for the

CRMI metal weight). Consequently, the ETM Index is heavily influenced by copper prices,

rendering the index potentially unstable. Furthermore, the ETM average weighting is based

solely on the years 2014 to 2016, whereas for the CRMI, we averaged data from 2012 to 2022.

Finally, the CRMI can be considered more robust than the ETM Index because extensive
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robustness tests are carried out. We have tested the CRMI using different weighting techniques

(e.g., equal weighted, trade weighted, trade weighted with a cap (equi) and HHI weighted) and

controlled for extreme value issues using winsorization techniques (Section 7).

In summary, we have demonstrated that the construction of the CRMI addresses several

limitations of the ETM Index. Specifically, the CRMI offers a broader perspective on energy

transition metals, provides greater granularity, employs a more comprehensive weighting scheme,

and includes more extensive robustness tests. However, before moving forward, it is essential to

analyze whether significant differences can be observed both graphically and through correlation

analysis between the two indices.

Figure 5: Comparing the CRMI and ETM Index
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Notes: This figure shows the Critical Raw Materials Index (CRMI) alongside the Energy Transition Metals
(ETM) Index, a sub-index of the IMF’s Primary Commodity Price Index (PCPI). The data covers the period
from July 2012 to October 2023, at a monthly frequency, as the ETM Index is only available on this basis.

As highlighted by Figure 5, the CRMI and ETM indices comove positively throughout the

entire period. However, toward the end of the period, a divergence between the two indices

becomes apparent, with CRMI prices exceeding those of the ETM. This divergence is primarily

due to a significant increase in tin prices from 2020 to 2022, and, to a lesser extent, an increase in

gallium prices in 2022 (Figure A in Appendix). Notably, both of these metals are excluded from

the ETM Index despite their critical role in the production of solar photovoltaic technologies.

Therefore, this first graphical analysis of the two indices suggests that the CRMI captures

different information than the ETM Index does. This suggestion is further confirmed by the
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correlation coefficient between the two variables. The correlation coefficient is 0.87 and is sig-

nificant at the 5% level.2

In addition, a more recent index worth noting is the IEA Energy Transition Mineral Price

Index, introduced in the Global Critical Minerals Outlook 2024 (IEA, 2024b). This index repre-

sents a basket price of copper, lithium, nickel, cobalt, graphite, manganese, and neodymium. Its

main limitation lies in the narrow selection of metals. Nonetheless, it underscores the pressing

need for a more comprehensive index to track the price dynamics of metals critical to the energy

transition.

Finally, we compare CRMI prices with oil prices to ensure that our metal price index is not

solely influenced by the oil market but also captures information specific to the mining industry.

Indeed, oil prices have a significant effect on the costs of the mining sector and therefore on metal

prices. The mining industry is highly energy intensive, heavily dependent on fossil fuels and one

of the largest emitters of greenhouse gases (Aramendia et al., 2023). In addition, rising oil prices

increase shipping costs, as metals are often transported long distances from extraction to refining.

Furthermore, fluctuations in oil prices trigger reactions in metal markets. Reboredo and Ugolini

(2020) find that REE stocks are positively but weakly correlated with oil prices under normal

conditions, but this correlation increases significantly during periods of high market stress. (Song

et al., 2021) find similar results during the pandemic crisis.

When examining Figure 6, which plots the CRMI alongside West Texas Intermediate (WTI)

oil prices, a positive correlation between the two series is evident. However, there are also

notable differences in their dynamics, especially at the beginning of the period. By calculating

the correlation coefficient between the CRMI and oil prices, we find it to be approximately 0.18,

which is significant at the 5% level.3 This finding indicates that while the CRMI is significantly

and positively correlated with WTI oil prices, it exhibits unique price dynamics and does not

merely replicate the behavior of oil prices.

2The correlation coefficient was calculated using Pearson’s method. In addition, the variables are in logarithm
difference, as they are integrated into order one. This conclusion has been reached through unit root tests using
the Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) tests.

3The correlation coefficient was calculated using the Pearson method. Both WTI and CRMI prices are
expressed in log differences, as they are both integrated of order one. This integration order was determined
using standard unit root tests, specifically the Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) tests.
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Figure 6: Comparing the CRMI and oil prices
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Notes: This figure represents the plot of the CRMI prices (in red) and oil prices (in blue). The series of oil
prices is the West Texas Intermediate prices and has been downloaded from the Federal Reserve Economic Data
(FRED). Both series have been computed in base 100 regarding the year 2012.

To conclude the section on comparability, we have shown that the CRMI has significant

advantages over other financial products, such as the ETM Index and the IEA Index. In fact,

the CRMI addresses several limitations of the ETM and IEA indices, which, to the best of our

knowledge, are the closest financial products to ours. The CRMI provides a better overview of

critical metals for the energy transition, with greater granularity, transparency and robustness

than its counterparts. In addition, a comparison between the CRMI and the oil price index

reveals similarities, as they are both commodity price indices, but they also differ in many ways.

The CRMI is therefore informative, has added value over other critical metal price indices, and

is not driven by fluctuations in the prices of commodities other than critical metals.

7. Robustness tests - Sensitivity analysis

Creating a composite indicator involves subjective decisions such as handling outliers, select-

ing weight factors and allocating those factors. In the case of the CRMI, these choices could

have a dramatic impact on the index. To assess the reliability of our index, a sensitivity analysis

examines how changes in assumptions affect the results. In summary, this robustness checks

section aims at identifying potential biases and informing discussions about the indicator’s lim-

itations.
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7.1. Using an alternative data treatment

In this subsection, we test the impact of dealing with missing and extreme values. The CRMI

construction includes a data imputation process based on the replacement of missing values by

their lagged values. Here, we carry out an alternative data imputation, i.e., a moving average

data imputation (see Eq. (2) in Subsection 3.1). Table 8 reports the descriptive statistics of the

alternative data sample, and Figure 7 illustrates the difference between the original CRMI and

the alternative version of the index.

Table 8: Descriptive statistics after alternative data treatment - Missing values

Obs. Mean Median St. Dev. Min Max
Aluminium 593 0.0005 0.0004 0.0241 -0.0862 0.1375
Arsenic 593 -0.0008 0.0000 0.0152 -0.0853 0.1974
Cadmium 593 0.0014 0.0000 0.0233 -0.1304 0.1250
Chromium 593 -0.0004 0.0000 0.0148 -0.0829 0.1303
Cobalt 593 0.0007 0.0000 0.0310 -0.1523 0.1317
Copper 593 0.0004 0.0007 0.0218 -0.0987 0.0914
Dysprosium 593 -0.0015 0.0000 0.0256 -0.1577 0.1593
Gallium 593 0.0006 0.0000 0.0278 -0.1052 0.1268
Germanium 593 0.0005 0.0000 0.0120 -0.0502 0.0872
Indium 593 -0.0008 0.0000 0.0229 -0.0909 0.1174
Iridium 593 0.0029 0.0000 0.0276 -0.0758 0.4089
Lead 593 0.0005 -0.0002 0.0255 -0.0788 0.1097
Lithium 593 0.0027 0.0000 0.0218 -0.1132 0.1564
Manganese 593 -0.0005 0.0000 0.0319 -0.2118 0.1766
Molybdenum 593 0.0013 0.0000 0.0340 -0.1308 0.1297
Neodymium 593 -0.0003 0.0000 0.0295 -0.1187 0.1750
Nickel 593 0.0012 0.0007 0.0478 -0.2563 0.8005
Platinum 593 -0.0004 -0.0003 0.0270 -0.2324 0.0918
Praseodymium 593 -0.0004 0.0000 0.0241 -0.1039 0.1333
Selenium 593 -0.0024 0.0000 0.0341 -0.1837 0.2803
Silicon 593 0.0005 0.0000 0.0352 -0.1232 0.4874
Silver 593 0.0001 -0.0002 0.0316 -0.2499 0.1238
Tellurium 593 -0.0012 0.0000 0.0223 -0.1684 0.1612
Terbium 593 -0.0006 0.0000 0.0304 -0.1294 0.1509
Tin 593 0.0009 0.0009 0.0301 -0.1371 0.1435
Vanadium 593 0.0008 0.0000 0.0339 -0.1379 0.1498
Yttrium 593 -0.0047 0.0000 0.0309 -0.2041 0.1391
Zinc 593 0.0008 0.0026 0.0280 -0.0970 0.1376
Graphite 593 -0.0010 0.0000 0.0116 -0.1242 0.0596

Notes: This table reports descriptive statistics of critical materials returns after alternative data imputation
(i.e., moving average imputation).

The results reported in Table 8 indicate that the moving average imputation of data has a

weak effect on the descriptive statistics of critical raw returns. The results are consistent with

the fact that moving average imputation replaces missing values in a dataset from several lagged

values instead of just the latter one.

Figure 7 illustrates the sensitivity of the index to the data treatment. The comparison

between the original index and the alternative index indicates only a few differences. Hence, the

sensitivity of the CRMI to this alternative data treatment appears to be not significant.
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Figure 7: Sensitivity analysis - Alternative data treatment - Missing values
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Notes: This figure illustrates the sensitivity of a different data treatment (i.e., moving average imputation).

While the CRMI construction does not imply any specific treatment for extreme values,

here, we perform a winsorization of the data (see Eq. (3) in Subsection 3.1). Table 9 reports

the descriptive statistics of the alternative data sample, and Figure 8 illustrates the difference

between the winsorized and nonwinsorized indices. The results reported in Table 9 indicate that

winsorization has an effect not only on the minimum and maximum values but also on the mean

and standard deviation of critical raw returns. However, the median value of the returns is not

affected. The results are consistent with the fact that winsorization replaces outliers in a dataset

with predetermined percentile values.

Figure 8 illustrates the sensitivity of the index to the data treatment. The comparison

between the original index and the index built from a winsorized data sample indicates only a

few differences. Hence, the sensitivity of the CRMI to this alternative data treatment appears

to be not significant.
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Table 9: Descriptive statistics after alternative data treatment - Extreme values

Obs. Mean Median St. Dev. Min Max
Aluminium 593 0.0004 0.0004 0.0236 -0.0739 0.0907
Arsenic 593 -0.0011 0.0000 0.0119 -0.0739 0.0907
Cadmium 593 0.0014 0.0000 0.0213 -0.0739 0.0907
Chromium 593 -0.0005 0.0000 0.0139 -0.0739 0.0907
Cobalt 593 0.0010 0.0000 0.0283 -0.0739 0.0907
Copper 593 0.0004 0.0007 0.0216 -0.0739 0.0907
Dysprosium 593 -0.0016 0.0000 0.0230 -0.0739 0.0907
Gallium 593 0.0004 0.0000 0.0261 -0.0739 0.0907
Germanium 593 0.0005 0.0000 0.0120 -0.0502 0.0872
Indium 593 -0.0009 0.0000 0.0224 -0.0739 0.0907
Iridium 593 0.0019 0.0000 0.0195 -0.0739 0.0907
Lead 593 0.0005 -0.0002 0.0253 -0.0739 0.0907
Lithium 593 0.0024 0.0000 0.0187 -0.0739 0.0907
Manganese 593 -0.0003 0.0000 0.0255 -0.0739 0.0907
Molybdenum 593 0.0014 0.0000 0.0309 -0.0739 0.0907
Neodymium 593 -0.0006 0.0000 0.0269 -0.0739 0.0907
Nickel 593 0.0004 0.0007 0.0327 -0.0739 0.0907
Platinum 593 -0.0001 -0.0003 0.0254 -0.0739 0.0907
Praseodymium 593 -0.0005 0.0000 0.0226 -0.0739 0.0907
Selenium 593 -0.0028 0.0000 0.0278 -0.0739 0.0907
Silicon 593 -0.0008 0.0000 0.0192 -0.0739 0.0907
Silver 593 0.0005 -0.0002 0.0286 -0.0739 0.0907
Tellurium 593 -0.0010 0.0000 0.0183 -0.0739 0.0907
Terbium 593 -0.0004 0.0000 0.0281 -0.0739 0.0907
Tin 593 0.0010 0.0009 0.0274 -0.0739 0.0907
Vanadium 593 0.0013 0.0000 0.0305 -0.0739 0.0907
Yttrium 593 -0.0045 0.0000 0.0256 -0.0739 0.0907
Zinc 593 0.0008 0.0026 0.0274 -0.0739 0.0907
Graphite 593 -0.0009 0.0000 0.0108 -0.0739 0.0596

Notes: This table reports descriptive statistics of critical materials returns after data winsorization.
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Figure 8: Sensitivity analysis - Alternative data treatment - Extreme values
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Notes: This figure illustrates the sensitivity of a different data treatment (i.e., winsorization) on the index.

7.2. Using alternative weights

In this subsection, we assess the sensitivity of the CRMI to different weights. Specifically,

we test (i) the impact of using a different weighting scheme (e.g., equal weighting) and (ii) the

impact of using an alternative weighting factor (i.e., the market concentration).

As described in Subsection 3.2, we first investigate the sensitivity of the index to different

weighting schemes. Figure 9 illustrates the different weighting schemes: equal weighting, trade

weighting and trade weighting (capped). The comparison between the distributions of weights

indicates that the most significant difference lies between the equal weighting scheme and the

other weighting schemes, where five critical raw materials are weighted very differently . Then,

the trade weighting scheme exhibits a single observable difference from the two other capped

weighting schemes: copper is the only weight capped to 20%. Figure 10 illustrates the sensitivity

of the CRMI to different weighting schemes. Logically, it appears that trade weighted indices are

very similar, whereas the equally weighted index exhibits the same features as the other indices,

apart from the level of this index.

We then experiment with another change in the CRMI construction: we use weights related

to the Herfindahl-Hirschman Index (HHI) of each critical raw material instead of their respective

trade volumes. The economic rationale is that the HHI reflects the supply risk aspect of criticality

(Bucciarelli et al., 2024). Figure 11 illustrates the sensitivity of the CRMI to a different weight
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factor. Instead of relying on the trade volume, which is a common way to construct a commodity

index, using the HHI of each critical raw enables us to construct an index weighted differently,

depending on the criticality of these raw materials (for the method, see Thomas et al. (2022)).

The resulting HHI weighted index is an alternative to the trade weighted index, so the comparison

between those two indices reflects the sensitivity of the CRMI to different weight factors.

Comparing these two indices in Figure 11, which differ only in the definition of the weights

allocated to each critical resource, enables us to assess the sensitivity of the index to the choice of

weight factors. This finding indicates that the index is robust to the definition of the weighting

factors.

Figure 9: Weighting critical metals
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Notes: This figure illustrates the different weighting schemes possible when constructing the index.
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Figure 10: Sensitivity of different weighting schemes
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Notes: This figure illustrates the sensitivity of different weighting schemes on the index.

Figure 11: Sensitivity of different weighting factors
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Notes: This figure illustrates the sensitivity of different weighting factors on the index.
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8. Conclusion

We propose and implement a critical raw materials index (CRMI) that is designed to be

representative of the critical raw materials market for energy transition. Specifically, the CRMI

is a fixed-weight price index aggregating the prices of critical raw materials from their respective

trade volumes. This composite indicator tracks a basket of selected critical raw materials to

capture the price dynamics of the raw materials essential for energy transition sectors. A de-

tailed set of validation exercises confirms that the CRMI (i) accurately captures the timing and

intensity of economic and geopolitical events over time and (ii) shares similarities with the IMF’s

ETM Index, although the CRMI has comparative advantages in terms of representativeness and

usability.

The CRMI provides policymakers with a crucial tool for understanding and addressing the

intricate dynamics of the mining market. By tracking the supply, demand, and pricing trends of

these critical metals, policymakers can gain valuable insights into the potential bottlenecks and

disruptions that could hinder the transition to a net-zero economy. This index enables informed

decision-making regarding investments in mining, processing, and recycling infrastructure, as

well as the development of effective policies to ensure a secure and sustainable supply of critical

metals.

In summary, our new index provides policymakers with a valuable tool for monitoring the

price dynamics of raw materials essential to the energy transition. This finding is in line with

the recommendations of the Draghi Report (2024) on EU competitiveness, which stresses the

importance of increasing transparency in the markets for critical minerals. The development of

reliable references on metal prices, as advocated in the report, is crucial for guiding investment

decisions.

Finally, our findings pave the way for new research opportunities. The availability of a

price index representative of the prices of all critical materials at a weekly frequency will help

researchers carry out empirical studies in temporal and cross-sectional dimensions. Among the

research topics made possible, research into the impact of supply and demand shocks on this

market could be of interest to both academics and policymakers.
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Appendix

A. Definition

Table A: Comparison of clean energy critical metals with the EU and US lists

Metal Energy transition sectors EU USA TOTAL
Aluminium Electricity Networks 1 1 1
Arsenic Solar PV 1 1 1
Boron* Wind 1 0 0
Cadmium Solar PV 0 0 1
Chromium Wind 0 1 1
Cobalt Electric Vehicles; Grid battery storage; Hydrogen 1 1 1

Copper
Electric Vehicles; Electricity Networks; Grid battery
storage; Hydrogen; Solar PV; Wind 1 0 1

Dysprosium (REE) Electric Vehicles; Wind 1 1 1
Gallium Solar PV 1 1 1
Germanium Solar PV 1 1 1
Graphite Electric Vehicles 1 1 1
Indium Solar PV 0 1 1
Iridium (PGM) Hydrogen 1 1 1
Lead Solar PV 0 0 1
Lithium Electric Vehicles; Grid battery storage 1 1 1
Manganese Electric Vehicles; Grid battery storage; Wind 1 1 1
Molybdenum Solar PV; Wind 0 0 1
Neodymium (REE) Electric Vehicles; Wind 1 1 1

Nickel
Electric Vehicles; Grid battery storage; Hydrogen;
Solar PV; Wind 1 1 1

Platinum (PGM) Hydrogen 1 1 1
Praseodymium (REE) Electric Vehicles; Wind 1 1 1
Selenium Solar PV 0 0 1
Silicon Electric Vehicles; Grid battery storage; Solar PV 1 0 1
Silver Solar PV 0 0 1
Tellurium Solar PV 0 1 1
Terbium (REE) Electric Vehicles; Wind 1 1 1
Tin Solar PV 0 1 1
Vanadium Grid battery storage 1 1 1
Yttrium Hydrogen 1 1 1
Zinc Solar PV; Wind 0 1 1
Zirconium** Hydrogen 0 1 0
TOTAL 20 23 29

Notes: The IEA (2024) provides the list of critical metals for the energy transition. The final report of the
European Commission (2023) provides a detailed overview of the critical metals classified for the European
Union. The US Geological Survey (2022) provides a list of critical metals for the United States. Please note
that a value of ’1’ indicates that the metal is included in the respective list, while a value of ’0’ indicates that
the metal is not on the list. REE stands for rare earth elements, PGM for platinum group metals and PV for
photovoltaics. Finally, * indicates that we were unable to find the data, while ** indicates that the quality of the
data was insufficient to be included in our index.
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Table B: Screened Metal Series

Name Series Rules Currency Unit Frequency Provider Database Start date

Aluminum
LME-Aluminum 99.7% Cash
U$/MT 1 USD t D LME Datastream 31/07/1957

Arsenic China Arsenic Metal 99% FOB 1 USD t D NA Bloomberg 02/07/2004
Arsenic CIF NWE U$/LB USD lb D NA Datastream 08/10/1993
Arsenic Metal =99.5% Domestic CNY t D SMM Datastream 01/06/2012
Minor Metals Arsenic 99.5 - % CNY t D SHMET Datastream 04/01/2011

Cadmium
Europe Cadmium Ingot 99.99%
In warehouse Rotterdam 1 USD lb D Asian Metal Bloomberg 01/02/2006
Cadmium 99.95% CIF NWE U$/LB USD lb D NA Datastream 07/10/1994
Cadmium 99.99% CIF NWE U$/LB USD lb D NA Datastream 07/10/1994
#0 Cadmium Ingot & Bar=99.995
Dom. CNY t D SMM Datastream 01/06/2012

Chromium
China Chromium Metal 99%
FOB 1 USD t D Asian Metal Bloomberg 12/01/2001
#1 Chromium =99.2%, Coarse
Particle CNY t D SMM Datastream 01/06/2012
Mtl Electrolytic Chromium 0.9997 CNY t D SHMET Datastream 04/01/2011

Cobalt LME-Cobalt Cash 1 USD t D LME Datastream 22/02/2010

Copper
LME-Copper Grade A Cash
U$/MT 1 USD t D LME Datastream 30/01/1957

Dysprosium
China Dysprosium Oxide 99%
FOB 1;2 USD kg D Asian Metal Bloomberg 20/04/2001
Dysprosium Oxid Dy2O 3/TREO
99.5-99.9 CNY kg D SMM Datastream 01/06/2012
Dysprosium-Iron Alloy Dy80 Dom. CNY t D SMM Datastream 01/06/2012
Dysprosium Metal Dy/ TREM=99%
Dom. CNY kg D SMM Datastream 01/06/2012
Dysprosium Metal 99% FOB China
US/kg USD kg D Asian Metal Datastream 18/04/2003

Gallium
China Gallium Metal 99.99%
FOB 1 USD kg D Asian Metal Bloomberg 12/01/2001
Gallium =99.99% Dom. CNY kg D SMM Datastream 01/06/2012
Gallium Ingots CIF NWE U$/KG USD kg D Refinitv Datastream 08/03/2002
Minor Metals Gallium 99.99 - % CNY kg D SHMET Datastream 04/01/2011

Germanium
China Germanium Metal 99.99%
FOB 1;2 USD kg D Asian Metal Bloomberg 09/04/2004
Germanium 50ohm CIF NWE U$/KG USD kg D NA Datastream 07/07/1995
Germanium Dioxide CIF NWE
U$/KG USD kg D NA Datastream 08/06/1995
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China Germanium Dioxide 99.99%
FOB USD kg D Asian Metal Bloomberg 12/01/2001
Germanium Ingot 50O/ Cm Dom. CNY kg D SMM Datastream 01/06/2012
Minor Metals Germanm 50 ohm/cm CNY kg D SHMET Datastream 04/01/2011

Graphite Graph spherical 99.9 FOB China 1;2 USD t W Fastmarkets MB Datastream 30/03/2012
Grphtflk94C-100 mesh fob CN $/ton USD t W Fastmarkets MB Datastream 16/08/2018
China Flake Graphite -194 FOB
USD/mt USD t D Asian Metal Bloomberg 02/09/2015

Indium China Indium Ingot 99.99% FOB 1 USD kg D Asian Metal Bloomberg 12/01/2001
Indium =99.99% Domestic CNY kg D SMM Datastream 01/06/2012
Indium CIF NWE U$/KG USD kg D NA Datastream 08/10/1993
Minor Metals Indium 99.99 - % CNY kg D SHMET Datastream 04/01/2011

Iridium JM Iridium London U$/Troy Oz 1 USD t oz D JM Datastream 01/07/1992
Precious Metals Iridium 99.95 - % CNY gm D SHMET Datastream 04/01/2011

Lead LME-Lead Cash U$/MT 1 USD t D LME Datastream 05/07/1993
Lead-Antimony Alloy CNY t D SMM Datastream 01/06/2012
#1 Lead Ingot Pb99.994 Dom. CNY t D SMM Datastream 01/06/2012

Lithium
Lithium Metal =99%, Battery
Grade 2 CNY t D SMM Datastream 01/06/2012
China Lithium Hydroxide
Monohydrate 56.5% FOB USD kg D Asian Metal Bloomberg 09/01/2018
LME Lithium Hydroxide CIF
(Fastmarkets MB) USD kg D Asian Metal Bloomberg 20/07/2021

Manganese
SMM Electrolytic Manganese
Metal Spot Price Daily (FOB) 1 USD t D SMM Reuters 01/06/2012
Manganese Electro CIF NWE
US/MT USD t D NA Datastream 08/10/1993
Manganese Ferro CIF NWE US/MT USD t D NA Datastream 06/06/2003

Molybdenum
Europe Molybdenum Oxide 57%
In warehouse Rotterdam 1 USD lb D Asian Metal Bloomberg 26/10/2005
FerAly Molybdenum Iron mo60 SP CNY t D SHMET Datastream 04/01/2011
Minor Metals Molybdenum 99 - % CNY kg D SHMET Datastream 04/01/2011
Mtlc Cmpd Industrial Molybdnm
Oxd51 - % CNY t D SHMET Datastream 04/01/2011

Neodymium
China Neodymium Oxide 99%
FOB 1;2 USD t D Asian Metal Bloomberg 20/04/2001
Neodymium Metal ND / Trem
99.0-99.99% Domestic Yuan/Metric
Ton CNY t D SMM Datastream 01/06/2012
Neodymium Metal 99% FOB China
US/kg USD D Asian Metal Datastream 18/04/2003
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Neodymium Oxide ND2O3 / Treo
99.0-99.9% Domestic Yuan/Metric
Ton CNY t D SMM Datastream 01/06/2012

Nickel LME-Nickel Cash U$/MT 1 USD t D LME Datastream 20/07/1993

Platinum
JM Platinum London U United
States Dollar Per t oz 1 USD t oz D JM Datastream 01/07/1992
Precious Metals Platinum 99.95 - % CNY gm D SHMET Datastream 12/07/2007

Praseodymium
China Praseodymium Oxide 99%
FOB 1;2 USD t D Asian Metal Bloomberg 04/02/2005
Praseodymium Metal Praseodymium
/ Trem 96.0-99.0% Domestic
Yuan/Metric Ton CNY t D SMM Datastream 01/06/2012
Praseodymium Metal 99% Minimum
Free on Board China United States
Dollar Per Kilogram USD kg D Asian Metal Datastream 18/04/2003
Praseodymium Oxide PR6O11 / Treo
99.0-99.9% Domestic Yuan/Metric
Ton CNY t D SMM Datastream 01/06/2012
Praseodymium-Neodymium Alloy
Praseodymium / Trem 20-25% ND /
Trem 75-80% Trem = 98.5%
Domestic Yuan/Metric Ton CNY t D SMM Datastream 01/06/2012

Selenium
Europe Selenium Powder 99.9%
In warehouse Rotterdam 1 USD lb D Asian Metal Bloomberg 21/12/2005
Minor Metals Selenium 99.90 - % CNY kg D SHMET Datastream 04/01/2011
Minor Metals Selenium 99.99 - % CNY kg D SHMET Datastream 04/01/2011
Selenium CIF NWE U$/LB USD lb D Refinitv Datastream 08/10/1993
Selenium Dioxide =98% Dom. CNY kg D SMM Datastream 01/06/2012
Selenium Ingot =99.9 - % CNY kg D SMM Datastream 01/06/2012

Silicon China Silicon Metal 2-2-02 FOB 1;4 USD t D Asian Metal Bloomberg 20/10/2011
Minor Metals Silicon 2202# CNY t D SHMET Datastream 04/01/2011
Silicon 3-3-0-3 Free on Board China
USD / Metric Ton USD t D Asian Metal Datastream 17/10/2011
Minor Metals Silicon 3303# CNY t D SHMET Datastream 04/01/2011
Silicon 4-4-1 Free on Board China
United States Dollar Per Metric Ton USD t D Asian Metal Datastream 07/04/2004
Minor Metals Silicon 441# CNY t D SHMET Datastream 04/01/2011
Silicon 5-5-3 Free on Board China
United States Dollar Per Metric Ton USD t D Asian Metal Datastream 18/04/2003
Minor Metals Silicon 553# CNY t D SHMET Datastream 04/01/2011
Silicon Lumps CIF NWE U$/MT USD t D Refinitv Datastream 08/10/1993
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Silver
LBMA Silver Price USD/t oz
DELAY 1;3 USD t oz D ICE Datastream 02/01/1968
Precious Metals Silver 1# 99.99 - % CNY kg D SHMET Datastream 12/07/2007
Precious Metals Silver 2# 99.95 - % CNY kg D SHMET Datastream 12/07/2007
Precious Metals Silver 3# 99.9 - % CNY kg D SHMET Datastream 12/07/2007
Silver, Handy&Harman (NY)
U$/Troy OZ USD t oz D Handy&Harman Datastream 02/01/1979

Tellurium
Europe Tellurium Metal 99.99%
In warehouse Rotterdam 1 USD kg D Asian Metal Bloomberg 16/05/2008
Tellurium =99.99% Domestic CNY kg D SMM Datastream 01/06/2012
Europe Tellurium Metal 99.9% In
warehouse Rotterdam USD kg D Asian Metal Bloomberg 23/11/2012
Minor Metals Tellurium 99.99 - % CNY kg D SHMET Datastream 04/01/2011

Terbium
China Terbium Oxide 99.9%
FOB 1;2 USD kg D Asian Metal Bloomberg 04/02/2005
Terbium Metal TB / Trem = 99.9%
Domestic RMB / kg CNY kg D SMM Datastream 01/06/2012
Terbium Metal 99% Minimum Free
on Board China United States Dollar
Per Kilogram USD kg D Asian Metal Datastream 18/04/2003
Terbium Oxide TB4O7 / Treo
99.95-99.99% Domestic RMB / kg CNY kg D SMM Datastream 01/06/2012

Tin LME-Tin 99.85% Cash U$/MT 1 USD t D LME Datastream 31/01/1957
#1 Tin Ingot Sn99.90 Domestic CNY t D SMM Datastream 01/06/2012
Mtl Pwdr Tin 200mesh 300mesh CNY t D SHMET Datastream 04/01/2011

Vanadium

China Vanadium Pentoxide
Flake 98%min In warehouse
Rotterdam USD/lb V2O5 1 USD lb D Asian Metal Bloomberg 30/11/2005
FerAly Vanadium Iron FeV50 SP CNY t D SHMET Datastream 04/01/2011
Vanadium Fe 80 CIF NWE U$/KG USD kg D Refinitv Datastream 08/10/1993
Minor Metals Vanadium 99.50 - % CNY kg D SHMET Datastream 04/01/2011
Vanadium Pentoxide CIF NWE USD lb D Refinitv Datastream 08/11/1994

Yttrium
China Yttrium Oxide
99.999%min FOB USD/kg 1;2 USD kg D Asian Metal Bloomberg 27/08/2010
Yttrium Metal Y/TREM 99.9-99.95
Dom. CNY kg D SMM Datastream 01/06/2012
Yttrium Metal 99% Minimum Free on
Board China United States Dollar Per
Kilogram USD kg D Asian Metal Datastream 18/04/2003
Yttrium Oxide Y2O3/T REO
99.995-99.99 CNY t D SMM Datastream 01/06/2012
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Zinc
LME-SHG Zinc 99.995% Cash
U$/MT 1 USD t D LME Datastream 31/01/1957
Zinc Alloy Domestic Yuan/Metric
Ton CNY t D SMM Datastream 01/06/2012
#1 Zinc Ingot Zn99.99 CNY t D SMM Datastream 01/06/2012
Zinc Oxide ZNO = 99.7% Domestic
Yuan/Metric Ton CNY t D SMM Datastream 01/06/2012
Mtlc Cmpd Zinc Oxide 99.7 CNY t D SHMET Datastream 04/01/2011

Notes: This table shows all the metal series screened, with those selected for the construction of our index highlighted in bold. Only series with spot prices are shown, as many metals
are traded over the counter and do not have hedging instruments. However, it is worth noting that metals traded on the London Metal Exchange (LME), such as copper and cobalt, also
offer futures contracts for three or fifteen months. The selection method for metal prices is based on several criteria. (1): The series is traded on a global exchange; if not, it is a domestic
export price series, i.e., free on board (FOB). (2): The series has a higher trading volume than its counterpart and/or a longer historical coverage. (3): The choice of series was based on the
provider. (4): The choice was driven by the form of the metal being traded. Let us take a few examples. In the case of dysprosium, this series was selected because it is an FOB price and
has a higher trading volume than its counterparts. The literature indicates that rare earth oxides are the most traded form on the market Proelss et al. (2018). For silicon, this series was
chosen because of its FOB status and its form, specifically #2202. The silicon used in photovoltaics requires a high purity level (99.99% - 9N). Although we lack a price series for this exact
purity, we selected silicon #2202, which has a purity of 99.58% (SCRREEN, Silicon, 2023). The only exception to our selection criteria is lithium. We do not have an FOB price series, and
the series traded by the LME started only in 2021. We therefore keep the series in CNY. When series are expressed in USD, they are global exchange series or FOB/CIF series. When series
are expressed in CNY, they represent Chinese domestic series. Finally, in the table, in the column on units, ’t’ stands for tons, ’kg’ for kilograms, ’gm’ for grams, ’lb’ for pounds, and ’t oz’
for troy ounces. In the frequency column, ’D’ stands for daily prices, and ’W’ stands for weekly prices.45



B. Comparability

Table C: Energy Transition Metals (ETM) Index

Metal Weight Series Unit Source

Aluminum 15.9%
Aluminum, 99.5% minimum purity, LME spot price,
CIF UK ports, USD/mt USD/mt LME

Chromium 3.2%
Chromium, #1 Chromium = 99.2%, 99A, Coarse
Particle, Fine Particle, USD/mt USD/mt SMM

Cobalt 0.6%
Cobalt, minimum 99.80% purity, LME spot price,
USD/mt USD/mt LME

Copper 34.3%
Copper, grade A cathode, LME spot price, CIF
European ports, USD/mt USD/mt LME

Lead 3.8%
Lead, 99.97% pure, LME spot price, CIF European
Ports, USD/mt USD/mt LME

Lithium 0.3%
Lithium, 99% pure, industrial grade, battery grade,
USD/mt USD/mt SMM

Manganese 3.7% Manganese Electro CIF North West Europe, USD/mt USD/mt Refinitiv

Molybdenum 5.3%
Molybdenum MO3, Insurance and Freight North
West Europe, USD/mt USD/mt Refinitiv

Nickel 6.7%
Nickel, melting grade, LME spot price, CIF
European ports, USD/mt USD/mt LME

Palladium 3.1% Palladium, LME spot price, USD/t oz USD/t oz LME
Platinum 4.4% Platinum, LME spot price, USD/t oz USD/t oz LME
REE 0.5% Rare earth carbonate REO 42-45% purity, USD/mt USD/mt SMM
Silicon 5.1% Silicon lumps, CIF North West Europe, USD/mt USD/mt Refinitiv
Silver 7.0% Silver, London Bullion Market Association, USD/t oz USD/t oz ICE

Vanadium 0.2%
Vanadium pentoxide, CIF North West Europe,
USD/mt USD/mt Refinitiv

Zinc 6.1%
Zinc, minimum special high-grade zinc of 99.995%
purity, USD/mt USD/mt LME

Notes: The Energy Transition Metals (ETM) Index is a sub-index of the Primary Commodity Price Index
(PCPI) and is implemented and updated by the IMF. REE stands for Rare Earth Elements and mt, t oz for
metric tonnes and troy ounces respectively.
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Table D: Critical Raw Material Index (CRMI) - Based on different weighting methodologies

Metal (1) (2) (3) (4) (5)
Aluminium 0.0345 0.1004 0.1096 0.1477 0.00723
Arsenic 0.0345 0.0002 0.0093 0.0003 0.11608
Cadmium 0.0345 0.0003 0.0094 0.0004 0.04737
Chromium 0.0345 0.0030 0.0121 0.0044 0.04219
Cobalt 0.0345 0.0310 0.0402 0.0456 0.19339
Copper 0.0345 0.4561 0.2000 0.2000 0.02376
Dysprosium 0.0345 0.0097 0.0188 0.0143 0.06547
Gallium 0.0345 0.0046 0.0138 0.0068 0.02777
Germanium 0.0345 0.0046 0.0138 0.0068 0.02777
Indium 0.0345 0.0046 0.0138 0.0068 0.02777
Iridium 0.0345 0.0063 0.0154 0.0092 0.07954
Lead 0.0345 0.0299 0.0391 0.0440 0.01452
Lithium 0.0345 0.0162 0.0254 0.0239 0.11442
Manganese 0.0345 0.0012 0.0104 0.0018 0.01533
Molybdenum 0.0345 0.0033 0.0125 0.0049 0.04920
Neodymium 0.0345 0.0097 0.0188 0.0143 0.06547
Nickel 0.0345 0.0347 0.0438 0.0510 0.02387
Platinum 0.0345 0.0664 0.0756 0.0977 0.03126
Praseodymium 0.0345 0.0097 0.0188 0.0143 0.06547
Selenium 0.0345 0.0014 0.0106 0.0021 0.03770
Silicon 0.0345 0.0265 0.0357 0.0390 0.03121
Silver 0.0345 0.0569 0.0661 0.0838 0.02391
Tellurium 0.0345 0.0016 0.0107 0.0023 0.10502
Terbium 0.0345 0.0097 0.0188 0.0143 0.06547
Tin 0.0345 0.0356 0.0447 0.0523 0.02548
Vanadium 0.0345 0.0036 0.0128 0.0053 0.07331
Yttrium 0.0345 0.0097 0.0188 0.0143 0.06547
Zinc 0.0345 0.0595 0.0686 0.0875 0.01843
Graphite 0.0345 0.0034 0.0126 0.0050 0.05435

Notes: This table displays the metals and their respective weights in the Critical Raw Materials Index (CRMI)
according to various weighting methodologies: (1) equal weighting, (2) trade weighting, (3) trade weighting
with cap and equal redistribution, (4) trade weighting with cap and proportional redistribution, and (5) HHI
weighting.
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Figure A: Comparison of the metal prices: CRMI-exclusive metals vs. ETM (logarithmic scale)
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Notes: This figure illustrates the price series of metals that are included in the Critical Raw Materials Index
(CRMI) but are not part of the Energy Transition Metals (ETM) Index. The ETM Index, a sub-index of the
Primary Commodity Price Index (PCPI), is implemented and updated by the IMF. Prices are presented on a
logarithmic scale to better capture trends and variations over time.
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